Acoustic Backscatter of the Sacramento River, from the Feather River to Knights Landing, California in February 2011
This part of the data release presents acoustic backscatter data collected on February 1, 2011, in the Sacramento River from the confluence of the Feather River to Knights Landing. The data were collected by the USGS Pacific Coastal and Marine Science Center (PCMSC) team with collaboration and funding from the U.S. Army Corp of Engineers. This project used interferometric sidescan sonar to characterize the riverbed and channel banks along a 12 mile reach of the Sacramento River, California (River Mile 79 ... |
Info |
Bathymetric DEM of the Sacramento River, from the Feather River to Knights Landing, California in February 2011
This part of the data release presents a digital elevation model (DEM) created from bathymetry data collected on February 1, 2011, in the Sacramento River from the confluence of the Feather River to Knights Landing. The data were collected by the USGS Pacific Coastal and Marine Science Center (PCMSC) team with collaboration and funding from the U.S. Army Corps of Engineers. This project used interferometric sidescan sonar to characterize the riverbed and channel banks along a 12 mile reach of the Sacramento ... |
Info |
San Francisco Bay-Delta bathymetric/topographic digital elevation model(DEM)
A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, 2005) that used Environmental Systems Research Institute(ESRI), ArcGIS Topo to Raster module to interpolate ... |
Info |
Standard deviation of the bathymetric DEM of the Sacramento River, from the Feather River to Knights Landing, California in February 2011
This part of the data release contains a grid of standard deviations of bathymetric soundings within each 0.5 m x 0.5 m grid cell. The bathymetry was collected on February 1, 2011, in the Sacramento River from the confluence of the Feather River to Knights Landing. The standard deviations represent one component of bathymetric uncertainty in the final digital elevation model (DEM), which is also available in this data release. The bathymetry data were collected by the USGS Pacific Coastal and Marine ... |
Info |
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (MLLW)
A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ... |
Info |
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (NAVD88)
A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ... |
Info |
Footprints and producers of source data used to create northern portion of the high-resolution (1 m) San Francisco Bay, California, digital elevation model (DEM)
Polygon shapefile showing the footprint boundaries, source agency origins, and resolutions of compiled bathymetric digital elevation models (DEMs) used to construct a continuous, high-resolution DEM of the northern portion of San Francisco Bay. |
Info |
Digital elevation model (DEM) of the Cache Slough Complex, Sacramento-San Joaquin Delta, California
This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2004 and 2019 in the Cache Slough Complex (CSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR), 2017 USGS Sacramento Delta Lidar, and 2004 bathymetry data from the Army Corp of Engineers. Small gaps ... |
Info |
Digital elevation model (DEM) of the Sacramento River Deep Water Ship Channel (DWSC), Sacramento-San Joaquin Delta, California
This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2017 and 2019 in the Sacramento River Deep Water Ship Channel (DWSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR) and 2017 USGS Sacramento Delta Lidar, to produce a seamless digital elevation ... |
Info |
Bathymetric change analyses of the Sacramento River near Rio Vista, California, and the junction of Cache and Steamboat sloughs, from 1992 to 2004
Bathymetric change grids covering the periods of time from 1992 to 1998 and from 1994 to 2004 are presented. The grids cover a portion of the Sacramento River near Rio Vista, California, extending partially upstream on Cache and Steamboat sloughs by the Ryer Island Ferry, as well as continuing up the Sacramento River towards Isleton. Positive grid values indicate accretion, or a shallowing of the surface bathymetric surface, and negative grid values indicate erosion, or a deepening of the bathymetric ... |
Info |
Bathymetric change analyses of the southernmost portion of the Mokelumne River, California, from 1934 to 2018
Bathymetric change grids covering the periods of time from 1934 to 2011, from 2011 to 2018, and from 1934 to 2018 are presented. The grids cover a portion of the Mokelumne River, California, starting at its terminus at the San Joaquin River and moving upriver to the confluences of the north and south branches of the Mokelumne. Positive grid values indicate accretion, or a shallowing of the surface bathymetric surface, and negative grid values indicate erosion, or a deepening of the bathymetric surface. ... |
Info |
Digital elevation model (DEM) of central San Francisco Bay, California, created using bathymetry data collected between 2009 and 2020 (MLLW)
A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the central portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ... |
Info |
Digital elevation model (DEM) of central San Francisco Bay, California, created using bathymetry data collected between 2009 and 2020 (NAVD88)
A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the central portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ... |
Info |
Digital elevation model (DEM) of south San Francisco Bay, California, created using bathymetry data collected between 2005 and 2020 (MLLW)
A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the southern portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ... |
Info |
Digital elevation model (DEM) of south San Francisco Bay, California, created using bathymetry data collected between 2005 and 2020 (NAVD88)
A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the southern portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ... |
Info |
Footprints and producers of source data used to create central portion of the high-resolution (1 m) San Francisco Bay, California, digital elevation model (DEM)
Polygon shapefile showing the footprint boundaries, source agency origins, and resolutions of compiled bathymetric digital elevation models (DEMs) used to construct a continuous, high-resolution DEM of the central portion of San Francisco Bay. |
Info |
Footprints and producers of source data used to create southern portion of the high-resolution (1 m) San Francisco Bay, California, digital elevation model (DEM)
Polygon shapefile showing the footprint boundaries, source agency origins, and resolutions of compiled bathymetric digital elevation models (DEMs) used to construct a continuous, high-resolution DEM of the southern portion of San Francisco Bay. |
Info |
Prospective regions for marine minerals on the Alaska Outer Continental Shelf
This shapefile is of prospective regional outlines of where marine minerals may occur on the Alaska Outer Continental Shelf (OCS). Polygons were hand digitized based on a U.S. Geological Survey (USGS) data review that considers the state of knowledge regarding marine mineral occurrences within the Alaska OCS. This data release is a companion to the USGS Professional Paper, Gartman and others, 2022. |
Info |
Gravity Cores and Box Cores from Suisun Bay, San Pablo Bay, and San Francisco Bay, California
This data release contains information on 94 gravity cores and 3 box cores that were collected by the U.S. Geological Survey in the areas of Suisun, San Pablo, and San Francisco Bay, California in 1990 and 2000. PDF files describe the cores that were split for analysis, and another pdf file contains a core-log legend. In addition, a shapefile provides sample collection data. |
Info |
Bathymetric change of Central San Francisco Bay, California: 1971 to 2020
This 25-m-resolution surface presents bathymetric change of Central San Francisco Bay, California (hereafter referred to as Central Bay). This surface compares a 1-m-resolution digital elevation model (DEM) of the central portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the Central Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution DEM of Central Bay comprised of historic surveys from ... |
Info |
Bathymetric change of San Pablo Bay, California: 1983 to 2015
This 25-m-resolution surface presents bathymetric change of San Pablo Bay, California, from 1983 to 2015. This surface compares a 1-m-resolution digital elevation model (DEM) of the northern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the San Pablo Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution bathymetric DEM of San Pablo Bay comprised of historic surveys from 1983 to 1986 ... |
Info |
Bathymetric change of South San Francisco Bay, California: 1979 to 2020
This 50-m-resolution surface presents bathymetric change of South San Francisco Bay, California (hereafter referred to as South Bay). This surface compares a 1-m-resolution digital elevation model (DEM) of the southern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the South Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 50-m-resolution DEM of South Bay comprised of historic surveys from 1979 to ... |
Info |
Bathymetric change of Suisun Bay, California: 1988 to 2016
This 25-m-resolution surface presents bathymetric change of Suisun Bay, California, from 1988 to 2016. This surface compares a 1-m-resolution digital elevation model (DEM) of the northern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the Suisun region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution bathymetric DEM of Suisun Bay comprised of historic surveys from 1988 to 1990 (referred to as ... |
Info |
Projected coastal flooding inundation depths for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flood depth GeoTIFFs based on sea-level rise (SLR) for the coast of the most populated American Samoa s most populated islands of Tutuila, Ofu-Olosega, and Ta'u. Digital elevation models were used to extract SLR flooded areas at 10-m2 resolution along the coastlines for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected coastal flooding inundation depths for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands
This data release provides flood depth GeoTIFFs based on potential future sea-level rise (SLR)for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas at 10-m2 resolution along the coastlines for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected coastal flooding inundation depths for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flood depth GeoTIFFs based on sea-level rise for the coast of the most populated Mariana Islands of Guam and Saipan. Digital elevation models were used to extract sea-level rise flooded areas at 10-m2 resolution along the coastlines for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios. |
Info |
Projected sea-level rise flooding inundation extents for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter in the Mariana Islands
This data release provides flooding extent polygons based on potential future sea-level rise (SLR) rise water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Digital elevation models were used to predict SLR flooding extents for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR rise scenarios. |
Info |
Projected sea-level rise flooding inundation extents for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flooding extent polygons based on sea-level rise (SLR) water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Ta'u. Digital elevation models were used to predict SLR flooding extents for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected sea-level rise flooding inundation extents for +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands
This data release provides flooding extent polygons based on potential future sea-level rise (SLR) water levels for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas along the coastlines at 10-m2 resolution and converted to polygon shapefiles of the extents for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Global ferromanganese crust and abyssal ferromanganese nodule prospective occurrence regions
This data release is a polygon shapefile representing prospective occurrence regions of ferromanganese crusts and abyssal ferromanganese nodules on the seafloor throughout the global oceans. Polygons represent areas where oceanographic criteria, such as low sedimentation rate and moderate primary productivity, overlap with geologic criteria, including regions with appropriate seafloor morphology for each mineral type, such as seamounts and ridges or abyssal plains. The regions indicate where ferromanganese ... |
Info |
Projected flood water depths on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands
Projected future wave-driven flooding depths on Roi-Namur Island on Kwajalein Atoll in the Republic of the Marshall Islands for a range of climate-change scenarios. This study utilized field data to calibrate oceanographic and hydrogeologic models, which were then used with climate-change and sea-level rise projections to explore the effects of sea-level rise and wave-driven flooding on atoll islands and their freshwater resources. The overall objective of this effort, due to the large uncertainty in ... |
Info |
Central San Francisco Bay bathymetric change: 1855 to 1979
This data release provides a series of four bathymetric change grids generated from historical bathymetric surveys collected in central San Francisco Bay, CA from the 1855 to 1979. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1855, 1895, 1920, 1947, and 1979. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were then adjusted to account for gridding ... |
Info |
Central San Francisco Bay bathymetry: 1855 to 1979
This data release provides a series of five bathymetric digital elevation models (DEMs) of central San Francisco Bay, CA generated from single-beam hydrographic surveys collected from 1855 to 1979. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1855, 1895, 1920, 1947, and 1979. Depth soundings from the pre-1930s surveys were manually digitized and georeferenced while the later surveys were obtained in digital ... |
Info |
San Pablo Bay bathymetric change: 1856 to 1983
This data release provides a series of five bathymetric change grids generated from historical bathymetric surveys collected in San Pablo Bay, CA from the 1856 to 1983. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1856, 1887, 1898, 1922, 1951, and 1983. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were then adjusted to account for gridding interpolation ... |
Info |
San Pablo Bay bathymetry: 1856 to 1983
This data release provides a series of six bathymetric digital elevation models (DEMs) of San Pablo Bay, CA generated from single-beam hydrographic surveys collected from 1856 to 1983. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1856, 1887, 1898, 1922, 1951, and 1983. Depth soundings from the pre-1930s surveys were manually digitized and georeferenced while the later surveys were obtained in digital format, and ... |
Info |
South San Francisco Bay bathymetric change: 1858 to 2005
This data release provides a series of five bathymetric change grids generated from historical bathymetric surveys collected in south San Francisco Bay, CA from the 1858 to 2005. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1858, 1898, 1931, 1956, and 1983 plus Sea Surveyor, Inc. collected a survey in 2005. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were ... |
Info |
South San Francisco Bay bathymetry: 1858 to 2005
This data release provides a series of six bathymetric digital elevation models (DEMs) of south San Francisco Bay, CA generated from single-beam hydrographic surveys collected from 1858 to 2005. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1858, 1898, 1931, 1956, and 1983 as well as a survey collected by Sea Surveyor, Inc. in 2005. Depth soundings from the pre-1930s surveys were manually digitized and ... |
Info |
Suisun Bay bathymetric change: 1866 to 1990
This data release provides a series of four bathymetric change grids generated from historical bathymetric surveys collected in Suisun Bay, CA from the 1866 to 1990. The National Ocean Service (NOS) and its predecessor, the United States Coast and Geodetic Survey, collected hydrographic surveys in 1866, 1886, 1923, 1941, and 1990. Surface modeling software was used to generate bathymetric DEMs of each of these surveys. The bathymetric DEMs were then adjusted to account for gridding interpolation bias and ... |
Info |
Suisun Bay bathymetry: 1866 to 1990
This data release provides a series of five bathymetric digital elevation models (DEMs) of Suisun Bay, CA generated from single-beam hydrographic surveys collected from 1866 to 1990. The DEMs were constructed based upon historical United States Coast and Geodetic Survey and National Ocean Service (NOS) surveys collected in 1866, 1886, 1923, 1941, and 1990. Depth soundings from the pre-1930s surveys were manually digitized and georeferenced while the later surveys were obtained in digital format, and all ... |
Info |
Single-beam bathymetry data collected in the Cache Slough Complex, Sacramento-San Joaquin Delta, California, during USGS field activities 2017-649-FA and 2018-684-FA
This portion of the USGS data release presents single beam bathymetry data collected during surveys performed in the Cache Slough Complex, Sacramento-San Joaquin Delta, California in 2017 and 2018 (USGS Field Activity Numbers 2017-649-FA and 2018-684-FA). Bathymetry data were collected using personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The final point data from the PWCs are provided in a comma-separated text file and are ... |
Info |
Topography data collected in the Liberty Island Conservation Bank portion of the Cache Slough Complex, Sacramento-San Joaquin Delta, California, during USGS field activity 2017-649-FA
This portion of the USGS data release presents topography data acquired in the Liberty Island Conservation Wildlands restoration site in 2017 (USGS Field Activity Number 2017-649-FA). Topographic data were collected on June 26 and 27, 2017 by walking with global navigation satellite system (GNSS) receivers mounted on backpacks. Hand-held data collectors were used to log raw data and display navigational information as the surveyors traversed the landscape. The final point data are provided in a comma ... |
Info |
April 2009 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in April 2009 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
April 2013 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in April 2013 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0.37 ... |
Info |
April 2016 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in April 2016 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0.37 ... |
Info |
April 2018 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in April 2018 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0.37 ... |
Info |
December 2008 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in December 2008 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
February 2009 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in February 2009 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011 . The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of ... |
Info |
January 2010 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in January 2010 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
January 2011 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in January 2011 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
March 2010 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in March 2010 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
March 2019 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in March 2019 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0.37 ... |
Info |
November 2013 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in November 2013 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
October 2009 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in October 2009 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
October 2014 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in October 2014 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0 ... |
Info |
October 2015 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in October 2015 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ... |
Info |
October 2016 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in October 2016 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0 ... |
Info |
September 2010 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California
Bathymetric survey data were collected in September 2010 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of ... |
Info |
Gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California
This data release contains information on gravity cores that were collected by the U.S. Geological Survey in the area of San Pablo Bay and Carquinez Strait, California in 1990, 1991, and 2000. Ten (10) pdf files describe gravity cores that were split, photographed, and imaged by X-rays, and another pdf file contains a core-log legend. In addition, a shapefile provides sample collection data. Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and ... |
Info |
Acoustic-backscatter data collected in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California, during field activity 2018-684-FA
Acoustic-backscatter data were collected during a 2018 swath survey in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California. Data were collected by the U.S. Geological Survey (USGS) during USGS field activity 2018-684-FA, using interferometric bathymetric sidescan sonar systems mounded to the USGS R/V San Lorenzo and the R/V Kelpfly. The backscatter data are provided as GeoTIFF images. |
Info |
Swath bathymetry data collected in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California, during field activity 2018-684-FA
Bathymetry data were collected during a 2018 swath survey in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California. Data were collected by the U.S. Geological Survey (USGS) during USGS field activity 2018-684-FA, using interferometric bathymetric sidescan sonar systems mounded to the USGS R/V San Lorenzo and the R/V Kelpfly. The bathymetry data and a shaded-relief version are provided as GeoTIFF images. |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the American Samoa’s most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated American Samoan Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands (ver. 1.1, September 2024)
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Mariana Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands' ... |
Info |