Storm-Impact Scenario XBeach Model Results – Scenario 1 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Inputs – Initial Bathymetry and Topography Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 11 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 12 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 20 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 2 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 3 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 6 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 7 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 8 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Wave Scenario Grid with Proposed Sediment Borrow Pit 3 of Breton Island, Louisiana: Model Input Grid 4 with Pit 3 Configuration
The Simulating WAves Nearshore (SWAN) wave model input grid 4 bathymetry with pit 3 configuration (G4_P3_grid.shp) and output of significant wave height, dominant wave period, and mean wave direction resulting from simulation of wave scenarios at Breton Island, LA, as described in USGS Open-File Report 20151055 are provided here. |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 2 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 3 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 4 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 5 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 6 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 7 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Initial DEMs with and without restoration alternatives R2-R7
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Hindcast Model Inputs and Results: Final DEM
The model output of bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in USGS Open-File Report 2019–1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Hindcast Model Inputs and Results: Initial DEM
The model input for the bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in U.S. Geological Survey (USGS) Open-File Report 2019-1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). |
Info |
ST1_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
ST2_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration measures for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
ST3_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
ST4_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Idealized Antecedent Topography Sensitivity Study: Initial Baseline and Modified Profiles Modeled with XBeach
Antecedent topography is an important aspect of coastal morphology when studying and forecasting coastal change hazards. The uncertainty in morphologic response of storm-impact models and their use in short-term hazard forecasting and decadal forecasting is important to account for when considering a coupled model framework. Mickey and others (2020) provided a methodology to investigate uncertainty of profile response within the storm impact model, XBeach, related to varying antecedent topographies. A ... |
Info |
Atlantic and Gulf coast sandy coastline topo-bathy profile and characteristic database
Seamless topographic-bathymetric (topo-bathy) profiles and their derived morphologic characteristics were developed for sandy coastlines along the Atlantic and Gulf coasts of the United States. As such, the rocky coasts of Maine, the coral reefs in southern Florida and the Keys, and the marsh coasts in the Mississippi Delta and the Florida Big Bend region and are not included in this dataset. Topographic light detection and ranging (lidar) data (dune crest, dune toe, and shorelines) from Doran and others ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (August 21, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 02, 2022, from South Hutchinson Beach, Florida
On August 02, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220802.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 03, 2021, from Jupiter Island, Florida
On August 03, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210803.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 03, 2022, from South Hutchinson Beach, Florida
On August 03, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220803.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 04, 2021, from Jupiter Island, Florida
On August 04, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210804.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 05, 2021, from Juno Beach, Florida
On August 05, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210805.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 06, 2021, from Juno Beach, Florida
On August 06, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210806.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 07, 2018, from Jensen Beach, Florida
On August 07, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180807.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 08, 2018, from Melbourne Beach, Florida
On August 08, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180808.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 10, 2021, from Melbourne Beach, Florida
On August 10, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210810.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 11, 2021, from Melbourne Beach, Florida
On August 11, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210811.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 20, 2019, from Melbourne Beach, Florida
On August 20, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190820.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 21, 2019, from Melbourne Beach, Florida
On August 21, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190821.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 27, 2019, from Jupiter Island, Florida
On August 27, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190827.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 28, 2019, from Jupiter Island, Florida
On August 28, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190828.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 12, 2022, from South Hutchinson Beach, Florida
On July 12, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220712.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 13, 2021, from Jupiter Island, Florida
On July 13, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210713.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 13, 2022, from South Hutchinson Beach, Florida
On July 13, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220713.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 14, 2021, from Jupiter Island, Florida
On July 14, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210714.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 15, 2021, from Juno Beach, Florida
On July 15, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210715.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 16, 2019, from Melbourne Beach, Florida
On July 16, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190716.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 16, 2021, from Juno Beach, Florida
On July 16, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210716.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 17, 2018, from Jensen Beach, Florida
On July 17, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180717.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 17, 2019, from Melbourne Beach, Florida
On July 17, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190717.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 18, 2018, from Melbourne Beach, Florida
On July 18, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180718.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 19, 2022, from Jupiter Island, Florida
On July 19, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220719.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 20, 2021, from Melbourne Beach, Florida
On July 20, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210720.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 20, 2022, from Jupiter Island, Florida
On July 20, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220720.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 21, 2021, from Melbourne Beach, Florida
On July 21, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210721.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 21, 2022, from Juno Beach, Florida
On July 21, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220721.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 22, 2022, from Juno Beach, Florida
On July 22, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220722.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 23, 2019, from Jupiter Island, Florida
On July 23, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190723.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 24, 2019, from Jupiter Island, Florida
On July 24, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190724.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 25, 2019, from Jensen Beach, Florida
On July 25, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190725.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 26, 2019, from Jensen Beach, Florida
On July 26, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190726.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 12, 2018, from Jensen Beach, Florida
On June 12, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180612.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 13, 2018, from Melbourne Beach, Florida
On June 13, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180613.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 14, 2022, from Jupiter Island, Florida
On June 14, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220614.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 15, 2021, from Melbourne Beach, Florida
On June 15, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210615.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 15, 2022, from Jupiter Island, Florida
On June 15, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220615.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 16, 2020, from Jupiter Island, Florida
On June 16, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20200616.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 16, 2021, from Melbourne Beach, Florida
On June 16, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210616.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 16, 2022, from Juno Beach, Florida
On June 16, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220616.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 17, 2020, from Jupiter Island, Florida
On June 17, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20200617.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 17, 2022, from Juno Beach, Florida
On June 17, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220617.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 18, 2019, from Melbourne Beach, Florida
On June 18, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190618.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 19, 2019, from Melbourne Beach, Florida
On June 19, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190619.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 22, 2021, from Jupiter Island, Florida
On June 22, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210622.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 22, 2022, from South Hutchinson Beach, Florida
On June 22, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220622.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 23, 2021, from Jupiter Island, Florida
On June 23, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210623.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 23, 2022, from South Hutchinson Beach, Florida
On June 23, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220623.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 24, 2021, from Juno Beach, Florida
On June 24, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210624.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 24, 2022, from South Hutchinson Beach, Florida
On June 24, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220624.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 25, 2019, from Jupiter Island, Florida
On June 25, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190625.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 25, 2020, from Melbourne Beach, Florida
On June 25, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20200625.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 25, 2021, from Juno Beach, Florida
On June 25, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210625.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 26, 2019, from Jupiter Island, Florida
On June 26, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190626.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 26, 2020, from Melbourne Beach, Florida
On June 26, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20200626.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 27, 2019, from Jensen Beach, Florida
On June 27, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190627.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 28, 2019, from Jensen Beach, Florida
On June 28, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190628.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 08, 2018, from Jensen Beach, Florida
On May 08, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180508.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 09, 2018, from Melbourne Beach, Florida
On May 09, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180509.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 18, 2021, from Jupiter Island, Florida
On May 18, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210518.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 19, 2021, from Jupiter Island, Florida
On May 19, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210519.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 19, 2022, from South Hutchinson Beach, Florida
On May 19, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220519.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 20, 2019, from Jupiter Island, Florida
On May 20, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190520.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 20, 2021, from Juno Beach, Florida
On May 20, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210520.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 20, 2022, from South Hutchinson Beach, Florida
On May 20, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220520.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 21, 2019, from Jupiter Island, Florida
On May 21, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190521.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 21, 2021, from Juno Beach, Florida
On May 21, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210521.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 22, 2019, from Jensen Beach, Florida
On May 22, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190522.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 23, 2019, from Jensen Beach, Florida
On May 23, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190523.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 24, 2022, from Jupiter Island, Florida
On May 24, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220524.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 25, 2021, from Melbourne Beach, Florida
On May 25, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210525.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 25, 2022, from Jupiter Island, Florida
On May 25, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220525.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 26, 2021, from Melbourne Beach, Florida
On May 26, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210526.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 26, 2022, from Juno Beach, Florida
On May 26, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220526.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 27, 2022, from Juno Beach, Florida
On May 27, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220527.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 30, 2019, from Melbourne Beach, Florida
On May 30, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190530.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 31, 2019, from Melbourne Beach, Florida
On May 31, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190531.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 01, 2022, from South Hutchinson Beach, Florida
On September 01, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220901.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 08, 2021, from Melbourne Beach, Florida
On September 08, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210908.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 09, 2021, from Melbourne Beach, Florida
On September 09, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210909.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 10, 2019, from Melbourne Beach, Florida
On September 10, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190910.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 11, 2019, from Melbourne Beach, Florida
On September 11, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190911.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
2014 Mobile County, Alabama Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 Mobile County, ... |
Info |
2016 USACE Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Initial_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Initial_Elevations_N.txt)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_114_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_114_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_134_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_134_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_152_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_152_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_155_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_155_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_158_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_158_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_186_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_186_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_191_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_191_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_23_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_23_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_257_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_257_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_4_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_4_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_71_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_71_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_95_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_95_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Year_30_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Year_30_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
5year_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
Ivan_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
2015 Mississippi and Alabama USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 Mississippi and ... |
Info |
2015 USACE Florida Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 U.S. Army Corps of ... |
Info |