Multispectral imaging

A method of remote sensing that obtains optical representations in two or more ranges of frequencies or wave lengths.
This category is also used for advanced spaceborne thermal emission and reflection radiometer, ASTER, Moderate-resolution imaging spectroradiometer, MODIS, and thematic mapper.
Subtopics:
(none)

Landsat images (9 items)
Related topics:

12 results listed by similarity [list alphabetically]
Lidar point clouds (LPC), elevation models, GPS data, image mosaics, and aerial images from thermal infra-red (TIR), natural color (RGB), and multispectral cameras collected during UAS operations at Lower Darby Creek, Darby Township, Pennsylvania, August 14, 2024

The U.S. Geological Survey deployed small uncrewed aircraft systems (sUAS) to collect aerial remote sensing data across sites within the Lower Darby Creek Superfund Site and the adjacent John Heinz National Wildlife Refuge (JHNWR) ~5 miles outside of Philadelphia, PA in March and August of 2024. March datasets include aerial images from natural color (RGB) and thermal infra-red (TIR) sensors across the JHNWR and adjacent tributaries as well as the nearby Clearview Landfill within the superfund site. ...

Info
Coastal Features Extracted from Landsat Satellite Imagery, Delaware Bay, New Jersey to Shinnecock Bay, New York, 2008-2022

This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Delaware Bay, New Jersey (NJ) to Shinnecock Bay, New York (NY). A total of 119 images acquired between 2008 and 2022 were analyzed to produce 143 thematic land-cover raster datasets. Water, bare earth (sand), and vegetated land-cover classes were mapped using successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare ...

Info
Coastal Land-Cover Data Derived from Landsat Satellite Imagery, Delaware Bay, New Jersey to Shinnecock Bay, New York, 2008-2022

This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Delaware Bay, New Jersey (NJ) to Shinnecock Bay, New York (NY). A total of 119 images acquired between 2008 and 2022 were analyzed to produce 143 thematic land-cover raster datasets. Water, bare earth (sand), and vegetated land-cover classes were mapped using successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare ...

Info
Wetland-Change Data Derived from Landsat Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2015: Wetland Persistence Analysis

This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created for the analysis of Virginia and Maryland Atlantic coastal wetland changes over time. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). To assess ...

Info
Coastal Features Extracted from Landsat Satellite Imagery, Northern Chandeleur Islands, Louisiana, 1984-2019

The data release (Bernier, 2021) associated with this metadata record serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery at the northern Chandeleur Islands, Louisiana. To minimize the effects of tidal water-level variations, 75 cloud-free, low-water images acquired between 1984 and 2019 were analyzed. Water, bare earth (sand), vegetated, and intertidal land-cover classes were mapped from Hewes Point to Palos Island using successive thresholding and masking ...

Info
Coastal Land-Cover Data Derived from Landsat Satellite Imagery, Northern Chandeleur Islands, Louisiana, 1984-2019

The data release (Bernier, 2021) associated with this metadata record serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery at the northern Chandeleur Islands, Louisiana. To minimize the effects of tidal water-level variations, 75 cloud-free, low-water images acquired between 1984 and 2019 were analyzed. Water, bare earth (sand), vegetated, and intertidal land-cover classes were mapped from Hewes Point to Palos Island using successive thresholding and masking ...

Info
Coastal Features Extracted from Landsat Satellite Imagery, Sabine Pass to Bay Coquette, Louisiana, 2013-2024

This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Sabine Pass to Bay Coquette, Louisiana (LA). A total of 179 images acquired between 2013 and 2024 were analyzed. Water, bare earth (sand), and vegetated land-cover classes were mapped using (1) successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare land index (NBLI), and the normalized difference vegetation index ...

Info
Coastal Land-Cover Data Derived from Landsat Satellite Imagery, Sabine Pass to Bay Coquette, Louisiana, 2013-2024

This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Sabine Pass to Bay Coquette, Louisiana (LA). A total of 179 images acquired between 2013 and 2024 were analyzed. Water, bare earth (sand), and vegetated land-cover classes were mapped using (1) successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare land index (NBLI), and the normalized difference vegetation index ...

Info
Wetland-Change Data Derived from Landsat Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2015: Land-cover Change Analysis

This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created for the analysis of Virginia and Maryland Atlantic coastal wetland changes over time. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). Land-cover ...

Info
Land-Cover Data Derived from Landsat Satellite Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1985 and 2015

This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created to analyze wetland changes along the Virginia and Maryland Atlantic coasts between 1984 and 2015. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). ...

Info
Topographic data, aerial imagery, and GPS data collected during uncrewed aircraft system (UAS) operations at Sesuit Marsh, Dennis, Massachusetts, August 12, 2024

Small Uncrewed Aircraft Systems (sUAS) were used to collect aerial remote sensing data over Sesuit Marsh in Dennis, MA. Raw data from aerial surveys include aerial images from natural color (RGB) and multispectral cameras and raw lidar data. These datasets were processed to produce high resolution digital elevation models (DEM), image mosaics, and lidar point clouds (LPC) to provide local partners with high resolution imagery and elevation data to monitor and identify vegetation cover of a salt marsh on ...

Info
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation

Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ...

Info