|
Extratropical Storm Jan2016 Assessment of Potential Coastal Change Impacts: 1200 PM EST FRI JAN 22 2016
This dataset defines storm-induced coastal erosion hazards for the Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct impact of the Extratropical Storm in January 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities ... |
Info |
|
Tropical Storm Isaias Assessment of Potential Coastal-Change Impacts: NHC Advisory 25, 0800 AM EDT MON AUG 3 2020
This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia, South Carolina, North Carolina and Virginia coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Isaias in August 2020. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the ... |
Info |
|
Tropical Storm Gordon Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0700 AM CDT TUE SEP 04 2018
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Gordon in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ... |
Info |
|
Extratropical Storm March 2018 Assessment of Potential Coastal Change Impacts: 0800 AM EST FRI MAR 02 2018
This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island, Massachusetts, New Hampshire and Maine coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of an Extratropical Storm in March 2018. Storm-induced water levels, due to both surge and waves, were ... |
Info |
|
Tropical Storm Nicole Assessment of Potential Coastal-Change Impacts: NHC Advisory 9, 700 AM EST WED NOV 09 2022
This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia and South Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Nicole in November 2022. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three types ... |
Info |
|
P10_Nov2012_Oct2014: Fire Island, NY pre- and post- storm cross-shore profiles from November 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from November 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 14 dates from November 04 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
Tropical Storm Colin Assessment of Potential Coastal Change Impacts: NHC Advisory 4, 0500 AM EDT MON JUN 06 2016
This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Colin in June 2016. Storm-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision ... |
Info |
|
Tropical Storm Bill Assessment of Potential Coastal-Change Impacts: NHC Advisory 2, 0900 AM UTC MON JUN 16 2015
This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Bill in June 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
|
Subtropical Storm Alberto Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0800 AM EDT SUN MAY 27 2018
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Subtropical Storm Alberto in May 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ... |
Info |
|
Tropical Storm Marco Assessment of Potential Coastal-Change Impacts: NHC Advisory 16, 0400 AM CDT MON AUG 24 2020
This dataset defines storm-induced coastal erosion hazards for the Texas, Louisiana, Mississippi, and Alabama coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Marco in August 2020. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three ... |
Info |
|
Tropical Storm Hermine Assessment of Potential Coastal Change Impacts: NHC Advisory 20, 0500 AM EDT FRI SEP 02 2016
This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Hermine in September 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
|
Delineated Coastal Cliff Tops Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff tops that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ... |
Info |
|
Delineated Coastal Cliff Toes Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff toes that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ... |
Info |
|
Hurricane Zeta Assessment of Potential Coastal-Change Impacts: NHC Advisory 16, 1000 AM CDT WED OCT 28 2020
This dataset defines storm-induced coastal erosion hazards for the Texas, Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Zeta in October 2020. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three ... |
Info |
|
Hurricane Sandy Assessment of Potential Coastal Change Impacts: NHC Advisory 29, 1100 AM EDT MON OCT 29 2012
This dataset defines hurricane-induced coastal erosion hazards for the Delaware, Maryland, New Jersey, New York, and Virginia coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Sandy in October 2012. Hurricane-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the ... |
Info |
|
Hurricane Sally Assessment of Potential Coastal-Change Impacts: NHC Advisory 12, 1100 AM EDT MON SEPT 14 2020
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Sally in September 2020. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three ... |
Info |
|
Hurricane Nate Assessment of Potential Coastal Change Impacts: NHC Advisory 12, 0800 AM EDT SAT OCT 07 2017
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Nate in October 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three ... |
Info |
|
Hurricane Milton Assessment of Potential Coastal-Change Impacts: NHC Advisory 17, 800 AM EDT WED OCT 09 2024
This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Milton in October 2024. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune ... |
Info |
|
Hurricane Michael Assessment of Potential Coastal Change Impacts: NHC Advisory 15, 0400 AM CDT WED OCT 10 2018
This dataset defines storm-induced coastal erosion hazards for the Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Michael in October 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
|
Hurricane Matthew Assessment of Potential Coastal Change Impacts: NHC Advisory 037, 800 AM EDT FRI OCT 07 2016
This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia, South Carolina and North Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Matthew in October 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of ... |
Info |
|
Hurricane Maria Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 0800 AM EDT TUE SEPT 26 2017
This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland and Delaware coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Maria in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ... |
Info |
|
Hurricane Lee Assessment of Potential Coastal-Change Impacts: NHC Advisory 40, 0500 AM EDT FRI SEP 15 2023
This dataset defines storm-induced coastal erosion hazards for the New York, Rhode Island, Massachusetts, New Hampshire and Maine coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Lee in September 2023. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the ... |
Info |
|
Hurricane Laura Assessment of Potential Coastal-Change Impacts: NHC Advisory 27, 1000 AM CDT WED AUG 26 2020
This dataset defines storm-induced coastal erosion hazards for the Texas, Louisiana, Mississippi and Alabama coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Laura in August 2020. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types ... |
Info |
|
Hurricane Joaquin Assessment of Potential Coastal Change Impacts: NHC Advisory 27, 0800 AM EDT SUN OCT 04 2015
This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island and Massachusetts coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Joaquin in October 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune ... |
Info |
|
Hurricane Irma Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 800 AM EDT SAT SEPT 9 2017
This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia and South Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Irma in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of ... |
Info |
|
Hurricane Ida Assessment of Potential Coastal-Change Impacts: NHC Advisory 13, 0700 AM CDT SUN AUG 29 2021
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Ida in August 2021. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three types of ... |
Info |
|
Hurricane Idalia Assessment of Potential Coastal-Change Impacts: NHC Advisory 12, 0200 PM EDT TUE AUG 29 2023
This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Idalia in August 2023. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune ... |
Info |
|
Hurricane Ian Assessment of Potential Coastal-Change Impacts: NHC Advisory 23, 800 AM EDT WED SEP 28 2022
This dataset defines storm-induced coastal erosion hazards for the Florida west coast and Florida through North Carolina Atlantic coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Ian in September 2022. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the ... |
Info |
|
Hurricane Helene Assessment of Potential Coastal-Change Impacts: NHC Advisory 12, 0500 AM EDT THURS SEP 26 2024
This dataset defines storm-induced coastal erosion hazards for the Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Helene in September 2024. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three types of ... |
Info |
|
Hurricane Harvey Assessment of Potential Coastal Change Impacts: NHC Advisory 020, 700 AM CDT FRI AUG 25 2017
This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Harvey in August 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
|
Hurricane Florence Assessment of Potential Coastal Change Impacts: NHC Advisory 57, 1100 AM EDT THU SEP 13 2018
This dataset defines storm-induced coastal erosion hazards for the Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Florence in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune ... |
Info |
|
Hurricane Dorian Assessment of Potential Coastal-Change Impacts: NHC Advisory 40, 500 AM EDT TUE SEP 3 2019
This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia, South Carolina and North Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Dorian in September 2019. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of ... |
Info |
|
Hurricane Delta Assessment of Potential Coastal-Change Impacts: NHC Advisory 19, 0400 AM CDT FRI OCT 09 2020
This dataset defines storm-induced coastal erosion hazards for the Texas, Louisiana, Mississippi and Alabama coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Delta in October 2020. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three ... |
Info |
|
1998 Fall Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Fall Gulf Coast ... |
Info |
|
RGB-averaged orthoimagery of coastal North Carolina, from 2020-05-08 to 2020-05-09
RGB-averaged orthoimages were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
|
Digital elevation models (DEMs) of coastal North Carolina, on 2019-10-11, one month Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
|
Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09
Digital elevation models (DEMs) were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial ... |
Info |
|
RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09
RGB-averaged orthoimages were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
|
Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09
Digital elevation models (DEMs) were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using ... |
Info |
|
RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
|
Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
|
RGB-averaged orthoimagery of coastal North Carolina, on 2019-10-11, one-month post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
|
RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
RGB-averaged ortho products were created from aerial imagery collected between September 8 and 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to ... |
Info |
|
Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between September 08 and September 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions post-Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
|
RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Orthoimages were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface before Hurricane Dorian and were created to document ... |
Info |
|
Shorelines_Oct2012_Sept2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This shapefile consists of Fire Island, NY pre- and post-storm shoreline data collected from October 2012 to September 2014. This dataset contains 13 Mean High Water (MHW) shorelines for Fire Island, NY (A total of 15 dates, where two shorelines were collected over multiple days). Prior to and following Hurricane Sandy in October, 2012, continuous alongshore DGPS data were collected to assess the positional changes of the shoreline (MHW - 0.46 m NAVD88) and the upper portion of the beach. Over the course of ... |
Info |
|
Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
|
P26_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P25_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P24_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P23_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P22_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P11_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 15 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P09_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P08_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set if cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
P07_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.
This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune ... |
Info |
|
Delineated Coastal Cliff Transects Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff transects that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) ... |
Info |