Remote Sensing Coastal Change Simple Data Distribution Service
The Remote Sensing Coastal Change Simple Data Service provides timely and long-term access to emergency, provisional, and approved photogrammetric imagery, derivatives, and ancillary data through a web service via HyperText Transfer Protocol to a folder/file structure organized by data collection platform and survey (collection effort) with metadata sufficient to facilitate both human and machine access. Data are acquired, processed, and published using standardized workflows. Each data type added to the ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Orthoimages were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface before Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between September 08 and September 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions post-Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
RGB-averaged ortho products were created from aerial imagery collected between September 8 and 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-10-11, one-month post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09
Digital elevation models (DEMs) were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09
RGB-averaged orthoimages were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09
Digital elevation models (DEMs) were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial ... |
Info |
Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents a digital surface model (DSM) and digital elevation model (DEM) of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The DSM and DEM have a resolution of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The DSM represents the elevation of the highest object within the bounds of a cell, including vegetation, woody ... |
Info |
Ground control point locations for the UAS survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the unoccupied aerial system (UAS) survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01. Twenty temporary ground control points (GCPs) consisting of small square tarps with black-and-white cross patterns were distributed throughout the area to establish survey control. The GCP positions were measured ... |
Info |
Aerial imagery from the UAS survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents the raw aerial imagery collected during the unoccupied aerial system (UAS) survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. A total of six flights were conducted for the ... |
Info |
Orthomosaic imagery of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents a high-resolution orthomosaic image of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The orthomosaic has a resolution of 2.5 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. ... |
Info |
Topographic point cloud of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents a topographic point cloud of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The point cloud has 115,819,907 points with an average point density of 611 points per-square meter. Each point in the point cloud contains an explicit horizontal and vertical coordinate, color, ... |
Info |
Digital surface models (DSMs) for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents digital surface models (DSMs) and hillshade images of the intertidal zone at Post Point, Bellingham Bay, WA. The DSMs were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, ... |
Info |
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation
Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-10-11, one month Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital Surface Models (DSMs) of the Whale's Tail Marsh region, South San Francisco Bay, CA
This portion of the data release presents digital surface models (DSM) of the Whale's Tail Marsh region of South San Francisco Bay, CA. The DSMs have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. Unlike a digital elevation model (DEM), a DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, structures, and other objects have not been removed from the data. ... |
Info |
Orthomosaic images of the Whale's Tail Marsh region, South San Francisco Bay, CA
This portion of the data release presents orthomosaic images of the Whale's Tail Marsh region of South San Francisco Bay, CA. The orthomosaics have resolutions of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. The raw imagery used to create these elevation models was acquired from an approximate altitude of 427 meters (1,400 feet) above ground level (AGL), using a Hasselblad A6D-100c camera fitted with an HC ... |
Info |
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, were created using structure-from-motion (SfM) techniques. The two study sites are located approximately 640 m from shore and approximately 20 m apart in the alongshore direction. At each site, an approximate 12-meter diameter area was imaged in three passes by a swimmer using a handheld digital camera. These images were fed into Structure-from-Motion (SfM) software to produce high-resolution (fine-scale), ... |
Info |
Digital Surface Models (DSM) from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents digital surface models (DSM) of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tides on 7 and 8 August 2017. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds ... |
Info |
Ground control point locations for UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the August 2017 unoccupied aerial system (UAS) surveys of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. Eighteen temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of ... |
Info |
Aerial imagery from UAS surveys of beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents the raw aerial imagery collected during the uncrewed aerial system (UAS) survey conducted on the ocean beaches adjacent to the Columbia River Mouth at the Oregon-Washington border in August 2017. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The ... |
Info |
Topographic point clouds from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents topographic point clouds of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The point clouds were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) on during low tide surveys on 7 and 8 August 2017. The point clouds from each survey are tiled into 1000 by 1000 meter tiles to reduce individual file sizes. The Fort Stevens point clouds have a ... |
Info |
Ground control point locations for UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the July 2021 unoccupied aerial system (UAS) surveys of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. Eighteen temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of small ... |
Info |
Aerial imagery from UAS surveys of beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents the raw aerial imagery collected during the uncrewed aerial system (UAS) survey conducted on the ocean beaches adjacent to the Columbia River Mouth at the Oregon-Washington border in July 2021. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The ... |
Info |
Topographic point clouds from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents topographic point clouds of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The point clouds were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) on 2017-11-01 during low tide surveys on 22 and 23 July 2021. The point clouds from each survey are tiled into 500 by 500 meter tiles to reduce individual file sizes. The Fort Stevens point clouds ... |
Info |
Orthomosaic images from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents high-resolution orthomosaic images of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The orthomosaics have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tide surveys on 7 and 8 August 2017. The raw imagery used to create the orthomosaics was acquired with a UAS fitted with a Ricoh ... |
Info |
Digital Surface Models (DSM) from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents digital surface models (DSM) of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tides on 22 and 23 July 2021. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds ... |
Info |
Orthomosaic images from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents high-resolution orthomosaic images of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The orthomosaics have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tide surveys on 22 and 23 July 2021. The raw imagery used to create the orthomosaics was acquired with a UAS fitted with a Ricoh ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-11-12
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2019-11-12
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2020-11-10
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. The orthomosaic is available in a high-resolution 5-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-05-08 to 2020-05-09
RGB-averaged orthoimages were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
Digital surface models (DSM) for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents digital surface models (DSM) and hillshade images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The DSMs have a resolution of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and ... |
Info |
Orthomosaic imagery for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents a high-resolution orthomosaic images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The orthomosaics have a resolution of 1.3 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. The raw imagery used to create the orthomosaics was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was ... |
Info |
Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have ... |
Info |
Orthomosaic imagery for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents a high-resolution orthomosaic image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The orthomosaic has a resolution of 2 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed ... |
Info |
Orthomosaic imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a high-resolution orthomosaic image of the coral reef off Waiakane, Molokai, Hawaii. The orthomosaic has a resolution of 2.5 centimeters (cm) per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 24 June 2018. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre ... |
Info |
Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric digital surface model (DSM) from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The DSM has a horizontal resolution of 10 centimeters per pixel and has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The DSM was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted ... |
Info |
Digital Surface Models (DSM) from UAS surveys of the upper reservoir delta at Jenkinson Lake, El Dorado County, California
This portion of the data release presents high-resolution Digital Surface Models (DSM) of the Jenkinson Lake upper reservoir delta in El Dorado County, California. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected during surveys with unoccupied aerial systems (UAS). The surveys were on 2021-10-13, 2021-11-04, 2022-10-25, and 2023-11-13, and were generally timed to coincide with low water level in the reservoir to ... |
Info |
Orthomosaic images from UAS surveys of the upper reservoir delta at Jenkinson Lake, El Dorado County, California
This portion of the data release presents high-resolution orthomosaic images of the Jenkinson Lake upper reservoir delta in El Dorado County, California. The orthomosaics have resolutions of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected during surveys with unoccupied aerial systems (UAS). The surveys were on 2021-10-13, 2021-11-04, 2022-10-25, and 2023-11-13, and were generally timed to coincide with low water level in the reservoir to ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the south coast of Moloka'i. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Pala'au, Umipa'a, Kaunakakai, Kamiloloa, Kawela, Kamalo, and Kalaeloa, were generated from 1:10K aerial photography, and are presented in one zip file (molokai_1ft.zip) that also contains lower-resolution 'browse' graphics of each image-mosaic area, as well as associated metadata. Digital mosaics at 1-meter resolution, including the ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Digital image mosaic of the nearshore coastal waters of Diamond Head on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Diamond Head area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Haleolono Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Haleolono Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kailua-Kona on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic with 1.0 meter-per-pixel resolution of the Kailua-Kona area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial ... |
Info |
Digital image mosaics of the nearshore coastal waters of Kalaeloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kalaeloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kawaihae on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kawaihae area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kukio on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kukio area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaic of the nearshore coastal waters of La'au Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the La'au Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Maunalua Bay on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Maunalua Bay area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of the Napili-Honokowai area on the northwest coast of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Napili-Honokowai area on the northwest coast of Maui. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). The image mosaic has been geometrically corrected using lidar data. Also available is a lower-resolution 'browse' image, and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Portlock area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Puko'o on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Puko'o area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters of southcentral Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southcentral Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southeast Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southeast Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southwest Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southwest Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital image mosaic of the nearshore coastal waters of Umipa'a on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Umipa'a area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Waiakane on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Waiakane area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Wai'alae on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Wai'alae area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Waikiki on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Waikiki area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic and resampled to 1-meter resolution. |
Info |
Shaded-relief image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic, resampled to 1-meter resolution, and merged with lidar bathymetry data to produce the shaded-relief image. |
Info |
Digital image mosaics of the nearshore coastal waters of Waikoloa on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Waikoloa area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Ground control point locations for UAS survey of the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zone at Post Point, Bellingham Bay, WA on 2019-06-06. Nineteen temporary ground control points (GCPs) were distributed throughout each survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns ... |
Info |
Orthomosaic imagery for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents a high-resolution orthomosaic images of the intertidal zone at Post Point, Bellingham Bay, WA. The orthomosaics were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. The orthomosaics are presented with two resolutions: one image, covering the entire survey area, has a resolution of 2 centimeters per pixel; the other image which was derived from a lower-altitude flight, covers an inset ... |
Info |
Topographic point cloud for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents topographic point clouds of the intertidal zone at Post Point, Bellingham Bay, WA. The point clouds were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. Two point clouds are presented with different resolutions: one point cloud (PostPoint_2019-06-06_pointcloud.zip) covers the entire survey area and has 145,653,2221 points with an average point density of 1,057 points per-square meter ... |
Info |
Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The imagery was acquired using two Department of Interior owned 3DR Solo quadcopters fitted with Ricoh GR II digital cameras featuring global shutters. The cameras were mounted using a fixed mount on the bottom of the UAS and oriented in a roughly nadir orientation. The ... |
Info |
Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. ... |
Info |
Ground control point locations for UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the Unmanned Aerial System (UAS) survey on of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The GCPs were used to establish ground control for the survey and consisted of 24 small (80 x 80 centimeter) square tarps with black-and-white cross patterns placed ... |
Info |
Orthomosaic imagery for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a high-resolution orthomosaic image of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The orthomosaic has a resolution of 3 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The raw imagery used to create the orthomosaic image was acquired using two UAS fitted with Ricoh GR II digital cameras with ... |
Info |
Topographic point cloud for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a topographic point cloud of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta, derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The point cloud contains 380,296,568 points at an approximate point density of 323 point per square-meter. Each point contains an explicit horizontal and vertical coordinate, color, intensity, and ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2018-12-02
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, expanded AOI, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of an expanded area surrounding Whiskeytown Lake derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 14-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with 8-bit ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2020-11-10
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents the raw aerial imagery collected during the unmanned aerial system (UAS) survey of the intertidal zone at West Whidbey Island, WA, on 2019-06-04. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. Flights using both a nadir camera orientation and an oblique camera orientation were conducted. For the nadir flights (F04, F05, F06, F07, and F08), the camera was mounted ... |
Info |
Digital surface model (DSM) for the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at West Whidbey Island, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been ... |
Info |
Ground control point locations for UAS survey of the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zone at West Whidbey Island, WA on 2019-06-04. Twenty-five temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns and ... |
Info |
Orthomosaic imagery for the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents a high-resolution orthomosaic image of the intertidal zone at West Whidbey Island, WA. The orthomosaic has a resolution of 2 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed ... |
Info |
Topographic point cloud for the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents a topographic point cloud of the intertidal zone at West Whidbey Island, WA. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. The point cloud has 293,261,002 points with an average point density of 1,063 points per-square meter. The point cloud is tiled to reduce individual file sizes and is grouped within a zip file for downloading. Each point in the point cloud ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, on 2019-06-03. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre ... |
Info |
Ground control point locations for UAS survey of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA, on 2019-06-03. Twelve temporary ground control points (GCPs) were distributed throughout each survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white ... |
Info |
Topographic point cloud for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents topographic point clouds of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. The point clouds for Puget Creek and Dickman Mill Park contain 74,565,548 and 122,791,637 points, respectively, at an approximate point spacing of 1 point every 2 centimeters. Each point contains an explicit horizontal and vertical ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, on 2019-06-05. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. For flights F01, F02, F03, F04, and F05 the ... |
Info |
Ground control point locations for UAS survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA on 2019-06-05. Eighteen temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns ... |
Info |
Topographic point cloud for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents a topographic point cloud of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. The point cloud has 206,323,353 points with an average point density of 929 points per-square meter. The point cloud is tiled to reduce individual file sizes and is grouped within a zip file for downloading. Each point in the point ... |
Info |
Aerial imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents raw aerial imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted in a nadir orientation using a fixed mount. Before each flight, the camera’s digital ISO, aperture, and shutter speed were adjusted for ambient light ... |
Info |
Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. Twenty temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) ... |
Info |
Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric point cloud from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The point cloud has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The point cloud was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (dates_meta.txt)
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 268 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Individual Dates) is a dataset consisting of 223 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 254 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 271 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Combined Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate ... |
Info |
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Individual Dates)
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 280 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from ... |
Info |
Seafloor character from air-photo data-Santa Barbara Channel
Seafloor character was derived from interpretations of aerial photograph-derived kelp-distribution data available for Santa Cruz Island in the Santa Barbara Channel, California (Kushner and others 2013). The number of substrate classes was reduced because rugosity could not be derived for all areas. |
Info |
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro on March 10, 2022
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ... |
Info |
Low-altitude georeferenced aerial imagery collected from a Helikite at Marconi Beach, Wellfleet on March 11, 2022
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
True color and multispectral ortho products created from UAS operations at North Core Banks, NC in October 2022
These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ... |
Info |
True color and multispectral aerial imagery collected from UAS operations at North Core Banks, NC in October 2022
These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ... |
Info |
Digital Surface Model representing Marconi Beach, Wellfleet, MA on March 22, 2023
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
Orthomosaic representing Marconi Beach, Wellfleet, MA on March 22, 2023
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
Digital Surface Model representing Head of the Meadow Beach, Truro, MA on March 10, 2023
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ... |
Info |
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro, MA on March 10, 2023
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ... |
Info |
Orthomosaic representing Head of the Meadow Beach, Truro, MA on March 10, 2023
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ... |
Info |
Low-altitude aerial imagery collected from a kite at Head of the Meadow Beach, Truro during field activity 2020-015-FA on March 6, 2020
The data in this release map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide environmental context for the camera calibration information for the 2019 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2020-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of the CoastCam, which are ... |
Info |
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro during field activity 2021-014-FA on February 4, 2021
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ... |
Info |
Low-altitude aerial imagery collected from a helium powered balloon-kite at Marconi Beach, Wellfleet during field activity 2021-022-FA on March 17, 2021
The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
Low-altitude aerial imagery collected from a Helikite at Marconi Beach, Wellfleet, MA on March 22, 2023
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
Low-altitude aerial imagery collected from a Helikite at Head of the Meadow Beach, Truro, MA on March 20, 2024
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In February and March 2024, U.S. ... |
Info |
SfM digital surface model and orthomosaic representing Head of the Meadow Beach, Truro, MA on March 20, 2024
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In February and March 2024, U.S. ... |
Info |
Low-altitude aerial imagery collected from a Helikite at Marconi Beach, Wellfleet, MA on March 22, 2024
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2024-016-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of two video cameras aimed at the beach (CoastCam CACO-02). In ... |
Info |
Structure from motion GCPs, digital surface model, and orthomosaic representing Marconi Beach, Wellfleet, MA on March 22, 2024
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2024-016-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of two video cameras aimed at the beach (CoastCam CACO-02). In ... |
Info |
Orthomosaics representing Nauset Light Beach, Eastham, MA on September 14 and 20, 2023, pre and post Hurricane Lee
The data in this release map Marconi Beach, Head of the Meadow Beach, and Nauset Light Beach, in Cape Cod National Seashore (CACO), Massachusetts, before and after Hurricane Lee in September 2023. U.S Geological Survey personnel conducted field surveys to collect topographic data using global navigation satellite systems (GNSS) at all three beaches. In addition, at Nauset Light Beach, an uncrewed aerial system (UAS) was used to collect images with a Ricoh GRII camera for use in structure from motion ... |
Info |
Unprocessed aerial imagery from 9 December 2015 coastal survey of Central California.
This is a set of 1132 oblique aerial photogrammetric images and their derivatives, collected from Capitola to Pajaro Dunes with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 January 2016 coastal survey of Central California.
This is a set of 1836 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 February 2016 coastal survey of Central California.
This is a set of 3494 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2016 coastal survey of Central California.
This is a set of 1309 oblique aerial photogrammetric images and their derivatives, collected from Santa Cruz to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2016 coastal survey of Central California.
This is a set of 2753 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 September 2016 coastal survey of Central California.
This is a set of 1600 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 September 2016 coastal survey of Central California.
This is a set of 1569 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ano Nuevo with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 December 2016 coastal survey of Central California.
This is a set of 3234 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 December 2016 coastal survey of Central California.
This is a set of 3036 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 25 January 2017 coastal survey of Central California.
This is a set of 4521 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 22 February 2017 coastal survey of Central California.
This is a set of 4808 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Lucia with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2017 coastal survey of Central California.
This is a set of 5642 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 April 2017 coastal survey of Central California.
This is a set of 5044 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 8 May 2017 coastal survey of Central California.
This is a set of 1975 oblique aerial photogrammetric images and their derivatives, collected from Pedro Point to Sunset Beach with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 May 2017 coastal survey of Central California.
This is a set of 628 oblique aerial photogrammetric images and their derivatives, collected from SeaCliff Beach to Fort Ord with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 May 2017 coastal survey of Central California.
This is a set of 3045 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 May 2017 coastal survey of Central California.
This is a set of 3164 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 27 May 2017 coastal survey of Central California.
This is a set of 642 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 31 May 2017 coastal survey of Central California.
This is a set of 410 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 13 June 2017 coastal survey of Central California.
This is a set of 757 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 26 June 2017 coastal survey of Central California.
This is a set of 5069 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 December 2017 coastal survey of Central California.
This is a set of 2948 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 21 December 2017 coastal survey of Central California.
This is a set of 2072 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 29 January 2018 coastal survey of Central California.
This is a set of 5365 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 7 March 2018 coastal survey of Central California.
This is a set of 5355 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 28 May 2018 coastal survey of Central California.
This is a set of 3550 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 June 2018 coastal survey of Central California.
This is a set of 1533 oblique aerial photogrammetric images and their derivatives, collected from Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 10 September 2018 coastal survey of Central California.
This is a set of 5846 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2019 coastal survey of Central California.
This is a set of 4734 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 4 March 2019 coastal survey of Central California.
This is a set of 2541 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 11 March 2019 coastal survey of Central California.
This is a set of 1967 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 10 June 2019 coastal survey of Central California.
This is a set of 5042 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 October 2019 coastal survey of Central California.
This is a set of 3777 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 31 October 2019 coastal survey of Central California.
This is a set of 1911 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 29 November 2019 coastal survey of Central California.
This is a set of 1782 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Davenport with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 30 November 2019 coastal survey of Central California.
This is a set of 1444 oblique aerial photogrammetric images and their derivatives, collected from Davenport to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 January 2020 coastal survey of Central California.
This is a set of 3072 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 25 January 2020 coastal survey of Central California.
This is a set of 1880 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 9 March 2020 coastal survey of Central California.
This is a set of 1979 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 March 2020 coastal survey of Central California.
This is a set of 4835 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 April 2020 coastal survey of Central California.
This is a set of 2889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 July 2020 coastal survey of Central California.
This is a set of 1890 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 30 September 2020 coastal survey of Central California.
This is a set of 3862 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 October 2020 coastal survey of Central California.
This is a set of 1982 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 10 January 2021 coastal survey of Central California.
This is a set of 1896 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 11 January 2021 coastal survey of Central California.
This is a set of 3796 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 29 January 2021 coastal survey of Central California.
This is a set of 4919 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 March 2021 coastal survey of Central California.
This is a set of 2049 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 26 March 2021 coastal survey of Central California.
This is a set of 5626 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 September 2021 coastal survey of Central California.
This is a set of 2678 oblique aerial photogrammetric images and their derivatives, collected from PigeonPt to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 December 2021 coastal survey of Central California.
This is a set of 4722 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 January 2022 coastal survey of Central California.
This is a set of 2066 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 4 February 2022 coastal survey of Central California.
This is a set of 2269 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 March 2022 coastal survey of Central California.
This is a set of 2098 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 9 June 2022 coastal survey of Central California.
This is a set of 4595 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12-13 September 2022 coastal survey of Central California.
This is a set of 3661 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 1 January 2023 coastal survey of Central California.
This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 January 2023 coastal survey of Central California.
This is a set of 2105 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 16 January 2023 coastal survey of Central California.
This is a set of 2763 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 January 2023 coastal survey of Central California.
This is a set of 5039 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 February 2023 coastal survey of Central California.
This is a set of 2943 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 February 2023 coastal survey of Central California.
This is a set of 1939 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2023 coastal survey of Central California.
This is a set of 1839 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 March 2023 coastal survey of Central California.
This is a set of 2758 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 13 March 2023 coastal survey of Central California.
This is a set of 2195 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 16 March 2023 coastal survey of Central California.
This is a set of 2915 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 March 2023 coastal survey of Central California.
This is a set of 2077 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 April 2023 coastal survey of Central California.
This is a set of 2374 vertical aerial photogrammetric images and their derivatives, collected from Half Moon Bay to Santa Cruz with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 June 2023 coastal survey of Central California.
This is a set of 2123 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 10 October 2023 coastal survey of Central California.
This is a set of 3929 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 11 October 2023 coastal survey of Central California.
This is a set of 4930 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 October 2023 coastal survey of Central California.
This is a set of 2869 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 December 2023 coastal survey of Central California.
This is a set of 4772 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 December 2023 coastal survey of Central California.
This is a set of 1821 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 January 2024 coastal survey of Central California.
This is a set of 2876 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 January 2024 coastal survey of Central California.
This is a set of 1965 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 February 2024 coastal survey of Central California.
This is a set of 4787 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2024 coastal survey of Central California.
This is a set of 2323 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 24 February 2024 coastal survey of Central California.
This is a set of 3059 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 7 March 2024 coastal survey of Central California.
This is a set of 2161 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 April 2024 coastal survey of Central California.
This is a set of 2286 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 June 2024 coastal survey of Central California.
This is a set of 5140 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 August 2024 coastal survey of Central California.
This is a set of 2003 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 January 2023 coastal-landslides survey of Central California.
This is a set of 8762 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 January 2023 coastal-landslides survey of Central California.
This is a set of 11207 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 4-5 November 2020 CZU-fire survey of Central California.
This is a set of 11776 near-nadir aerial photogrammetric images and their derivatives, collected from CZU fire with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 26 January 2017 landslides survey of Central California.
This is a set of 4889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2017 landslides survey of Central California.
This is a set of 5954 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 March 2018 coastal survey of Central and southern California.
This is a set of 1160 oblique aerial photogrammetric images and their derivatives, collected from Mud Creek Slide to Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera ... |
Info |
Unprocessed aerial imagery from 13 October 2018 coastal survey of Northern California to Washington.
This is a set of 11805 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Mussel Rock CA with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 19 April 2024 coastal survey of Northern California to Washington.
This is a set of 14032 oblique aerial photogrammetric images and their derivatives, collected from Hoh Head to Cape Mendocino with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 25 September 2016 coastal survey of Oregon and Washington.
This is a set of 1712 oblique aerial photogrammetric images and their derivatives, collected from Cape Falcon to Cascade Head with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 28 September 2017 coastal survey of Oregon and Washington.
This is a set of 2060 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Nestucca River OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 3 August 2020 coastal survey of Oregon and Washington.
This is a set of 2324 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 September 2020 coastal survey of Oregon and Washington.
This is a set of 2158 oblique aerial photogrammetric images and their derivatives, collected from NW WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 29 August 2022 coastal survey of Oregon and Washington.
This is a set of 2413 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 June 2023 coastal survey of Oregon and Washington.
This is a set of 10139 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
PCMSC PlaneCam – Field data from periodic and event-response surveys of the U.S. West Coast.
This is an ongoing collection of aerial oblique and near-nadir images, ancillary data, and derivatives, from aerial surveys of coastal and near-coastal environments with a crewed light aircraft using the "PCMSC PlaneCam," a mounted fixed-lens DSLR camera with an attached consumer-grade GPS for time-keeping and approximate position, and a Global Navigation Satellite System (GNSS) for precise positioning. Data are collected and produced primarily for coastal monitoring using structure-from-motion ... |
Info |
Unprocessed aerial imagery from 28 September 2016 coastal survey of Southern California.
This is a set of 2671 oblique aerial photogrammetric images and their derivatives, collected from ptConception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 March 2017 coastal survey of Southern California.
This is a set of 2979 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 27 December 2017 coastal survey of Southern California.
This is a set of 2392 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Santa Barbara with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 13 September 2018 coastal survey of Southern California.
This is a set of 2062 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 May 2020 coastal survey of Southern California.
This is a set of 2167 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 September 2020 coastal survey of Southern California.
This is a set of 1968 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2022 coastal survey of Southern California.
This is a set of 2212 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 28 September 2022 coastal survey of Southern California.
This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 2 October 2022 coastal survey of Southern California.
This is a set of 1108 oblique aerial photogrammetric images and their derivatives, collected from Santa Rosa Island with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by ... |
Info |
Unprocessed aerial imagery from 8 March 2023 coastal survey of Southern California.
This is a set of 2006 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 12 October 2023 coastal survey of Southern California.
This is a set of 2013 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Port Hueneme with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 5 January 2024 coastal survey of Southern California.
This is a set of 2061 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 12 February 2024 coastal survey of Southern California.
This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 23 February 2024 coastal survey of Southern California.
This is a set of 2371 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 18 March 2024 coastal survey of Southern California.
This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 23 January 2018 Thomas-fire survey of Southern California.
This is a set of 4838 oblique aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 19 April 2023 thomas-fire survey of Southern California.
This is a set of 3086 vertical aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 4 August 2020 coastal survey of Washington.
This is a set of 645 oblique aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 28 August 2022 coastal survey of Washington.
This is a set of 4116 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 29 August 2022 coastal survey of Washington.
This is a set of 4281 oblique and near nadir aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the ... |
Info |
Unprocessed aerial imagery from 6 July 2024 coastal survey of Washington.
This is a set of 7809 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 31 August 2024 coastal survey of Washington.
This is a set of 6976 oblique aerial photogrammetric images and their derivatives, collected from Juan de Fuca Strait to Grays Harbor with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 1967-10-18
Presented here is a point cloud produced by the U.S. Geological Survey (USGS) from historical U.S. Air Force vertical aerial imagery, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was downloaded from USGS Eros Data Center and processed using structure-from-motion ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-03-08
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-05-19
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point Cloud Coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-05-27
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-13
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-26
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-10-12
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using a UAS-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Ricoh GR camera in DNG format and processed using structure-from-motion photogrammetry ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-07
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using a UAS-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Ricoh GR camera in DNG format and processed using structure-from-motion photogrammetry with ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-12-21
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ... |
Info |
Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2018-01-29
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. Point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on January 9, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on January 25, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on February 14, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on March 16, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which were ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on April 28, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which were located ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on May 4, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on September 18, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which were located ... |
Info |
Surveyed Positions of Ground Control Points and Photos of In-Place Features Used as Ground Control Points Associated With Images Collected During Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts on January 9, January 25, February 14, March 16, April 28, May 4, and September 18, 2017 (Text Files and Photos)
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which ... |
Info |
Listing of File Names and Positions of Images Collected During Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts on January 9, January 25, February 14, March 16, April 28, May 4, and September 18, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts were obtained with a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which ... |
Info |
Surveyed Positions of Transect Points Associated With Images Collected During Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts on January 9, January 25, February 14, March 16, May 4, and September 18, 2017
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on March 30, 2016
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on September 21, 2016
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on January 22, 2016
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on January 25, 2016
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ... |
Info |
Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on February 11, 2016
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ... |
Info |
Surveyed Positions of Ground Control Points Associated With Images Collected During Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts on January 22, January 25, February 11, March 30, and September 21, 2016
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Post Point, Bellingham Bay, WA, on 2019-06-06. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre-programmed autonomous ... |
Info |
Low-altitude aerial imagery collected from a Helikite at the Pea Island National Wildlife Refuge DUNEX Site, North Carolina in September and October 2021
The data in this part of the release are images of the beach for use in structure from motion that were taken with a camera attached to a helium filled balloon-kite (Helikite). During September and October 2021, USGS and Woods Hole Oceanographic Institute (WHOI) scientists conducted multiple field surveys to collect an elevation time series at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. Agisoft Metashape (v. 1.8.1) was used to create orthomosaics and ... |
Info |