Description |
Simulatations of water levels in the Salish Sea for a continuous hindcast of the period October 1, 1985, to September 30, 2015 were conducted to evaluate the utility and skill of a sea-level anomaly predictor and to develop extreme water level estimates accounting for decadal climate variability. The model accounts for sea level position, tides, remote sea-level anomalies, local winds and storm surge and stream flows as they affect water density. Comparison of modeled and measured water levels showed the model predicts extreme water levels at NOAA tide gage stations within 0.15 m. Model inputs and outputs of time-series water levels along the -5 m depth isobath are presented. In addition, extreme water level recurrence for the 1-,2-,5-,10-,20-,50-, and 100-year water levels computed from annual Maxima/Generalized Extreme Value (AM/GEV) and peak-over-threshold (POT) extreme value analyses across the entire domain are presented. [More]
|